Skip to main content

3.6.3. Example of permitted torque and inertia moment calculation

3.6.3. Example of permitted torque and inertia moment calculation

 

(1)   Case #1 Simple 2-D model

 

 

Figure 3.11 HS165 2-D load model

 

M – Load weight

Jxx – Inertia moment in X direction from weight center of load

Jyy – Inertia moment in Y direction from weight center of load

Jzz – Inertia moment in Z direction from weight center of load

Ja4- Inertia moment from R2 axis rotation center

Ja5- Inertia moment from B axis rotation center

Ja6- Inertia moment from R1 axis rotation center

 

Load condition: Stainless steel with length and width of 300mm and thickness of 200mm (Mass 141.3kg)

 

    Permitted torque limit

Location of B axis weight center             LX = 379mm, LY = 0mm, LZ = -79mm

If you apply the B and R1 axis length limit in the torque map, it is shown as follows.

B axis based length  

R1 axis based length 

 

    Permitted inertia moment limit

Inertia moment of load from the weight center Jxx= 1.53kgm2, Jyy= 2.12 kgm2, Jzz= 1.53 kgm2

B axis inertia moment (Ja5)

R1 axis inertia moment (Ja6)

 

    Conclusion

It is safe because the weight, torque and inertia moment all satisfy the limited condition.

 

(2)   Case #2 Complicated 3-D model

 

 

Figure 3.12 HS165 3-D load model 2-D shape

 

Aluminum block shape combination

(σ=0.00287 g/mm3,           : 164.7 kg)

m1 (60×300×300)              :  15.5kg

m2 (470×400×200)             : 107.9kg

m3 (300×300×160)             :  41.3kg

 

mi – Weight of i block load

LXi – Weight center location in X axis direction of I block

LYi - Weight center location in Y axis direction of I block

LZi - Weight center location in Z axis direction of I block

 

    Permitted torque limit

 

You can calculate the weight center location for the total load from the B axis rotation center as follows.

 (Symmetric to Y axis)

 

The weight center location for the total load from the B axis rotation center Lx = 527.3mm, LY = 0mm, LZ = -226.5mm

 

If you apply the B and R1 axis length limit in the torque map, it is shown as follows.

 

B axis based length  → torque value 945.4Nm

R1 axis based length  → torque value 37.2Nm

 

x1 y1 z1 – x, y and z direction length of block m1

x2 y2 z2 – x, y and z direction length of block m2

x3 y3 z3 – x, y and z direction length of block m3

 

LX1, LY1, LZ1 – Weight center location of block m1 from B axis rotation center

LX2, LY2, LZ2 - Weight center location of block m2 from B axis rotation center

LX3, LY3, LZ3 - Weight center location of block m3 from B axis rotation center

 

Jxx1, Jyy1, Jzz1 – Inertia moment by x, y and z axis from the weight center of block m1

Jxx2, Jyy2, Jzz2 – Inertia moment by x, y and z axis from the weight center of block m2

Jxx3, Jyy3, Jzz3 – Inertia moment by x, y and z axis from the weight center of block m3

 

 

Figure 3.13 HS165 3-D load model 3-D shape

 

    Permitted inertia moment limit

 

Table 33 Inertia moment from weight center by block

Block weight (kg)

Weight center (Lx, LY, LZ)

Jxx

Jyy

Jzz

m1 (15.5)

(0.245, 0, 0)

0.232 kgm2

0.121 kgm2

0.121 kgm2

m2 (107.9)

(0.45, 0, -0.25)

1.799 kgm2

2.346 kgm2

3.425 kgm2

m3 (41.3)

(0.835, 0, -0.25)

0.398 kgm2

0.398 kgm2

0.620 kgm2

 

Ex) Calculating the inertia moment by axis from the weight center of block m1

 

B axis inertia moment (Ja5)

 

R1 axis inertia moment (Ja6)